Сетевое издание
Международный студенческий научный вестник
ISSN 2409-529X

ОЦЕНКА ВЛИЯНИЯ РАДИОАКТИВНОГО ЗАГРЯЗНЕНИЯ ПИЩЕВЫХ ПРОДУКТОВ ЖИВОТНОГО И РАСТИТЕЛЬНОГО ПРОИСХОЖДЕНИЯ НА КАЧЕСТВО ПРОТЕКАНИЯ ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССОВ

Широпятова А.Ю. 1 Симонова В.Г. 2
1 БПОУ ОО "Орловский базовый медицинский колледж"
2 ФГБОУ ВО "ОГУ им. И.С. Тургенева"
В естественных условиях человек, как и все живое на Земле, постоянно подвергается воздействию “фонового” ионизирующего излучения от естественных радиоизотопов и космического излучения. Проникающая радиация - новый повреждающий фактор среды, с которым организм встретился всего около ста лет назад. Но за это время возможности действия проникающей радиации на человека и животных возросли. Конечно, для защиты природы от заражения ее радиоактивными веществами, а тем более для защиты человека от действия проникающей радиации применяются весьма эффективные меры, но этого не всегда бывает достаточно. Механизм смертельного действия проникающей радиации заключается в возникновении цепных, развивающихся с самоускорением реакций, происходящих без участия ферментов и приводящих к разрушению различных биологических мембран, распаду структурных фосфолипидов и белков, а затем и гибели организма. При очень больших дозах облучения возможна почти моментальная смерть (так называемая “нервная смерть” под лучом) вследствие необратимых изменений в нервной системе. При менее сильных, но опасных для жизни поражениях, страдает и центральная нервная система: нарушаются поступление в нее импульсов и распространение их. В результате этого происходят функциональные и трофические расстройства и дезорганизуется центральная регуляция функции организма. Существенно нарушаются процессы обмена веществ, причем в первую очередь страдают сложные метаболические цепи реакций и процессы биосинтезов. Тяжело повреждается кроветворная система, резко падает устойчивость организма к различным патогенетическим факторам, в частности к инфекциям.
источник
радиация
радиоактивный элемент
уровень
загрязнение
1. Белозерский Г.Н. Радиационная экология. М: ООО «Издательство Юрайт», 2019. 30 с.
2. В.С. Калистратова, И.К. Беляев, Е.С. Жорова, П.Г. Нисимов, И.М. Парфенова, Г.С. Тищенко, М.М. Цапков Радиобиология инкорпорированных радионуклидов. М: Москва, 2012. 45-85 с.
3. Алексахин Р.М. Радиоэкология//Радиационная биология. 2015. №4 87-95 с.
4. Линник В.Г. Ландшафтная дифференциация техногенных радионуклидов. М: Москва, 2018. 92-104 с.
5. Чеботарева Г.С. Оценка эффективности проекта радиационной обработки продукции агропромышленных предприятий. М: Екатеринбург, 2021. 17-60 с.
6. Ильин Л.А., Кириллов В.Ф., Коренков И.П. Радиационная гигиена. М: ГЭОТАР-Медиа, 2010. 223-229 с.

Введение: Санитарно-эпидемиологические правила и нормативы "Гигиенические требования безопасности и пищевой ценности пищевых продуктов" устанавливают гигиенические нормативы безопасности и пищевой ценности для человека пищевых продуктов, а также требования по соблюдению указанных нормативов при изготовлении, ввозе и обороте пищевых продуктов. Санитарные правила предназначены для граждан, индивидуальных предпринимателей, юридических лиц, деятельность которых осуществляется в области изготовления, ввоза и оборота пищевых продуктов, оказанию услуг в сфере розничной торговли пищевыми продуктами и сфере общественного питания, а также для органов и учреждений Государственной санитарно-эпидемиологической службы Российской Федерации, осуществляющих государственный санитарно-эпидемиологический надзор и контроль.

Цель исследования: проанализировать влияние радиоактивного загрязнения пищевых продуктов животного и растительного происхождения на качество протекания физико-химические процессов.

Все химические элементы состоят из атомов. Большинство атомов стабильно, что означает, что они неизменны. Но некоторые из самых тяжелых атомов распадаются и превращаются в другие.

Каждый радиоактивный элемент при распаде испускает определенные лучи с какой-то частотой. Эту частоту невозможно ни ускорить, ни замедлить никаким способом. Некоторые элементы распадаются быстро, другие медленно, но в любом случае это явление не подвластно человеку.

Источники радиоактивных излучений по природе своего происхождения, можно разделить на естественные и искусственные источники радиации.[1,2]

Рис.1. Источники радиоактивных излучений

Естественные источники радиации

Основную часть облучения население земного шара получает от естественных источников радиации. Большинство из них таковы, что избежать облучения от них совершенно невозможно. Разные виды излучения падают на поверхность Земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре, естественная радиоактивность присутствует в пище и воздухе (рис.2). Каждый человек в большей или меньшей степени подвергается воздействию естественного излучения, и для большей части населения это излучение является источником облучения.

Рис.2. Пути попадания радиации в организм человека

Облучению от естественных источников радиации подвергается любой житель Земли, однако одни из них получают большие дозы, чем другие. Это зависит, в частности, от того, где они живут.

Нормальным для проживания человека считается уровень гамма-фона в 20 микрорентген в час. Но это весьма условно, потому что в принципе нормировать естественное излучение нельзя. Оно зависит от конкретной местности, ее рельефа: в горах, например, выше, чем на равнине. В некоторых местах земного шара, там, где залегают особенно радиоактивные породы, уровень радиации оказывается значительно выше среднего. Но многие люди живут там, где привыкли, и ничего с ними не случается. Горцы, к примеру, живут в условиях, где уровень естественной радиации в два-три раза выше среднего, а долгожителей среди них больше.

Десятки тысяч людей питаются в основном мясом северного оленя (карибу), в котором присутствуют в довольно высокой концентрации нуклиды свинца-210 и полония-210. Эти изотопы попадают в организм оленей зимой, когда они питаются лишайниками, в которых накапливаются оба изотопа. Дозы внутреннего облучения человека от полония-210 в этом случае могут в 35 раз превышать средний уровень. А люди, живущие в местах с повышенной концентрацией урана, получают дозы облучения, в 75 раз превосходящие средний уровень, поскольку едят мясо и требуху овец и кенгуру.[3,5] Допустимые уровни по стронцию гораздо меньше, чем по цезию для всех продуктов питания (табл. 1).

Таблица 1. Допустимые уровни (РДУ-99)

Продукт

Бк/кг, Бк/л

Для цезия-137

Вода питьевая

10

Молоко и цельномолочная продукция

100

Молоко сгущенное и концентрированное

200

Творог и творожные изделия

50

Сыры сычужные и плавленые

50

Масло коровье

100

Мясо и мясные продукты, в том числе:

Говядина, баранина и продукты из них

500

Свинина, птица и продукты из них

180

Картофель и корнеплоды

80

Хлеб и хлебопродукты

40

Мука, крупы, сахар и мед

60

Жиры растительные и животные, маргарин

40

Овощи

100

Фрукты

40

Ягоды дикорастущие

185

Грибы свежие

370

Грибы сушеные

2500

Детское питание

37

Прочие продукты питания

370

Для стронция-90

Вода питьевая

0,37

Детское питание

1,85

Молоко и цельномолочная продукция

3,7

Хлеб и хлебопродукты

3,7

Картофель и корнеплоды

3,7

Вышеупомянутые нуклиды в большой степени концентрируются в рыбе и моллюсках, поэтому люди, потребляющие много рыбы и других даров моря, могут получить относительно высокие дозы облучения.

Использование газа для приготовления пищи, открытых угольных жаровень - это увеличивает уровень облучения за счет естественных источников радиации.

Некоторые строительные материалы также имеют определенную радиоактивность, например, известняк, песчаник - до 100мкЗв/год, бетон - 100-200, естественный камень, производственный гипс - 200-400, шлаковый камень, гранит - 400-2000. Использование в качестве строительных материалов гранита и бетона безусловно влияет на дозовую нагрузку человека.

В последнее время становится актуальной проблема радона. Радон образуется при естественном радиоактивном распаде радия практически повсюду, в том числе и в грунтовых породах под зданиями, в подземных питьевых водах. Радон выделяется и из строительных материалов, применяемых в промышленном и гражданском строительстве. Поскольку радон является тяжелым газом, концентрация его в бытовых помещениях первого этажа и подвальных всегда выше.

Прежде чем попасть в организм человека, радиоактивные вещества проходят по сложным маршрутам в окружающей среде, и это приходится учитывать при оценке доз облучения, полученных от какого-либо источника.

Искусственные источники радиации
Искусственные радионуклиды образуются в результате человеческой деятельности (рис. 3)

https://topuch.com/kontrolenaya-rabota-po-ekologii-velikij-novgorod-2022-g-1-30-r/353428_html_a063b0451ebaf872.jpg

Рис.3. Примеры искусственного источника радиации

Испытание ядерного оружия -один из самых опасных источников радиоактивного загрязнения окружающей среды.

При испытании ядерного оружия в атмосфере радиоактивные вещества попадают в верхние слои атмосферы, из которых они медленно переносятся в нижние слои атмосферы и затем на землю. Концентрация радионуклидов, образовавшихся при испытании ядерного оружия, в воздухе, дождевой воде и пище заметно уменьшилась по сравнению с максимальными значениями и в настоящее время находится на самых низких уровнях.

Подобно плутонию-239, около 3 т. которого выпало на землю в виде осадков в результате испытаний ядерного оружия, при ядерном взрыве образуется большое количество других различных радионуклидов. Наибольший интерес представляют радионуклиды, создающие большую дозу облучения, такие, как углерод-14, стронций-90 и цезий-137.

Эти радионуклиды переносятся по пищевым цепочкам в пищу человека и, таким образом, приводят к дозе внутреннего облучения, обусловленной в настоящее время главным образом углеродом-14. Отложения радионуклидов, испускающих гамма-излучение, приводят к внешнему облучению.

Авария реактора в Чернобыле 26 апреля 1986 г. резкое перенапряжение мощности в реакторе на Чернобыльской атомной электростанции вызвало взрыв, в результате которого в течение десяти дней в атмосферу было выброшено значительное количество радионуклидов.

Что касается доз, полученных населением, то наиболее значимыми выпавшими радионуклидами были йод-131, цезий-134 и цезий-137. Почти вся доза получена от внешнего облучения и от радионуклидов, поступивших с пищей.

К сожалению, порой встречаются случаи, когда жители прилегающих к периметру следа сел пасут на этой территории скот, заготавливают корма. Потом с молоком и мясом они потребляют повышенные дозы радионуклидов.[4,6]

Выбросы радионуклидов в окружающую среду происходят от многих источников, включая ядерный топливный цикл, объекты оборонной промышленности, научно-исследовательские организации, неядерную промышленность.

Ядерная энергетика.Именно она ответственна за большую часть искусственно полученных радионуклидов, которые выбрасываются в окружающую среду. Различные виды радионуклидов выбрасываются в жидкой форме или в виде твердых частиц, а также в газообразной форме на каждой стадии топливного цикла, причем природа выброса зависит от специфических операций в каждом процессе.

Заводы по производству топлива и обогащению выделяют главным образом изотопы урана и тория, что приводит к получению годовой коллективной дозы менее чем 0,1 чел-Зв от всех воздействий этих радионуклидов. В ядерной энергетике выбросы в атмосферу приводят к получению годовой коллективной дозы 5 чел-Зв преимущественно от перехода трития, углерода-14 и серы-35 в пищевые продукты. Годовая коллективная доза от жидких отходов от АЭС гораздо меньше; предполагают, что она меньше, чем 0,3 чел-Зв. Эта доза создается главным образом при употреблении в пищу радионуклидов, содержащихся в рыбе, крабах или моллюсках.

При переработке отработавшего ядерного топлива образуются выбросы, наиболее значимые в радиационном отношении, общая годовая коллективная доза составляет не более 20 чел-Зв. В процессе вторичной переработки образуются жидкие отходы.

Выбросы в воздух от других установок ядерной энергетики добавляют в годовую коллективную дозу еще 5 чел-Зв. При этом общая доза для населения от воздействий выбросов и жидких отходов в ядерной энергетике составляет 30 чел-Зв (табл. 2).

Таблица 2.Годовые дозы от радионуклидов, выбрасываемых в окружающую среду.

Источник

Годовая коллективная эффективная доза, чел-Зв.

Ядерная промышленность

30

Сжигание угля

10

Сжигание угля. Выбросы радионуклидов в окружающую среду происходят и при некоторых процессах в неядерной промышленности. В результате в большей части этих выбросов наблюдаются незначительные индивидуальные дозы, которые вносят небольшой вклад в коллективную дозу. Однако одна отрасль промышленности заслуживает внимания в этом отношении - это получение электричества на электростанциях, работающих на каменном угле. Облучение происходит как при вдыхании в воздух, так и при переносе этих радионуклидов по пищевым цепочкам. Максимальная индивидуальная доза очень мала (меньше, чем 1 мкЗв). Годовая коллективная доза для населения Великобритании, получаемая от электростанций, работающих на каменном угле, составляет около 5 чел-Зв, а при сжигании каменного угля для домашних целей дополнительно 5 чел-Зв.

Уголь, подобно большинству других природных материалов, содержит ничтожные количества первичных радионуклидов. Последние, извлеченные вместе с углем из недр земли, после сжигания угля попадают в окружающую среду, где могут служить источником облучения людей.

Добыча фосфатовведется во многих местах, они используются главным образом для производства удобрений, которых было получено около 30 млн. тонн. Большинство разрабатываемых фосфатных месторождений содержит уран, присутствующий там в довольно высокой концентрации. В процессе добычи и переработки руды выделяется радон, да и сами удобрения радиоактивны, и содержащиеся в них радиоизотопы проникают из почвы в пищевые культуры. Радиационное загрязнение в этом случае бывает обыкновенно незначительным, но повышается, если удобрения вносят в землю в жидком виде или если содержащие фосфаты вещества скармливают скоту. Такие вещества широко используются в качестве кормовых добавок, что может привести к значительному увеличению содержания радиоактивности в молоке. Все эти аспекты применения фосфатов дают за год ожидаемую коллективную эффективную эквивалентную дозу, равную примерно 6000 чел-Зв.

Влияние радиоактивного загрязнения на человека

Клетка — это слаженная динамическая система биологически важ­ных макромолекул, которые скомпонованы в компартменты (субклеточ­ные образования), выполняющие определенные физиологические фун­кции.

Наиболее чувствительными к облучению органеллами клеток организ­ма млекопитающих являются ядро и митохондрии. Здесь повреждения проявляются в малые сроки и при малыхдозах. Наиболее всего угнетают­ся процессы окислительного фосфорилирования, изменяются физико-химические свойства нуклеопротеидов, в результате чего происходят ко­личественные и качественные изменения в ДНК, нарушаются процессы транскрипции и трансляции. Кроме этого, угнетаются энергетические процессы, выброс в цитоплазму ионов К+и N+, нарушаются функции мембран. Одновременно возможны все виды мутаций: геномные мутации (кратные изменения гаплоидного числа хромосом), хромосомные мута­ции или хромосомные аберрации (структурные или численные измене­ния хромосом), генные или точковые мутации (изменения молекулярной структуры генов, в результате чего синтезируются белки, утратившие свою биологическую активность).

Принято рассматривать три этапа радиационного поражения клетки:

I этап можно назвать физическим. На этом этапе происходит иониза­ция и возбуждение макромолекул; при этом поглощенная энергия реа­лизуется в слабых местах (в белках — 5Н-группы, в ДНК — хромофор­ные группы тимина, в липидах — ненасыщенные связи).

II этап — химические преобразования. На этом этапе происходит вза­имодействие радикалов белков, нуклеиновых кислот, липидов с водой, кислородом, с радикалами воды и т. п. Это в свою очередь приводит к образованию гидроперекисей, ускоряет процессы окисления, вызывает множественные изменения молекул. В результате этого начальный эф­фект многократно усиливается. Разрушается структура биологических мембран, усиливаются другие процессы деструкции, высвобождаются ферменты, наблюдается изменение их активности, которые связаны с высвобождением ферментов и изменением их ак­тивности.

III этап — биохимический. На этом этапе происходят нарушения активности. Различные ферментные системы реагируют на облучение неоднозначно. Активность одних ферментов после облучения возрастает; других — снижается, третьих — остается неизменной. К числу наибо­лее радиочувствительных процессов в клетке относится окислительное фосфорилирование. Нарушение этого процесса отмечается через 20— 30 минут при дозе облучения 100 рад. Оно проявляется в повреждении системы генерирования АТФ, без которой не обходится ни один про­цесс жизнедеятельности.

Облучение целостного организма приводит к снижению гликогена в скелетных мышцах, печени и ряде других тканей в результате нейрогуморальной реакции на облучение. Кроме этого обнаруживается наруше­ние процессов распада глюкозы (гликолиз) и высокополимерных поли­сахаридов.

При действии ионизирующих излучений на липиды происходит об­разование перекисей.

Этим процессам придают особое значение в развитии лучевого пора­жения, т. к. это приводит к разрушению клеточных мембран и гибели клетки.

В организме при его облучении наблюдается снижение общего со­держания липидов, их перераспределение между различными тканями с увеличением уровня в крови и печени (что, вероятно, связано с измене­ниями углеводного обмена). Кроме того, наблюдается угнетение ряда антиоксидантов, что, в свою очередь, также способствует образованию токсичных гидроперекисей.

По характеру распределения в организме человека радиоактивные вещества можно условно разделить на следующие три группы.

Отлагающиеся преимущественно в скелете (так называемые остеотропные изотопы — стронций, барий, радий и другие).

Концентрирующиеся в печени (церий, лантан, плутоний и другие).

Равномерно распределяющиеся по системам (водород, углерод, инертные газы, железо и другие). Причем одни имеют тенденцию к на­коплению в мышцах (калий, рубидий, цезий), а другие — в селезенке, лимфатических узлах, надпочечниках (ниобий, рутений).

Особое место занимает радиоактивный йод — он селективно аккуму­лируется щитовидной железой.

Если принять в качестве критерия чувствительности к ионизирую­щему излучению морфологические изменения, то клетки и ткани орга­низма человека по степени возрастания чувствительности можно распо­ложить в следующем порядке: нервная ткань, хрящевая и костная ткани, мышечная ткань, соединительная ткань, щитовидная железа, пищева­рительные органы, легкие, кожа, слизистые оболочки, половые железы, лимфоидная ткань, костный мозг.

Важнейшим фактором предотвращения накопления радионуклидов в организме людей является питание. Это и употребление в пищу опре­деленных продуктов и их отдельных компонентов. Особенно это касает­ся защиты организма от долгоживуших радионуклидов, которые способ­ны мигрировать по пищевым цепям, накапливаться в органах и тканях, подвергать хроническому облучению костный мозг, костную ткань и т. п. Установлено, что обогащение рациона рыбой, кальцием, фтором, вита­минами А, Е, С, которые являются антиоксидантами, а также неусвояе­мыми углеводами (пектин) способствует снижению риска онкологиче­ских заболеваний, играет большую роль в профилактике радиоактивно­го воздействия наряду с радиопротекторами, к которым относятся веще­ства различной химической природы, в том числе и серосодержащие со­единения, такие как цистеин и глутатион.


Библиографическая ссылка

Широпятова А.Ю., Симонова В.Г. ОЦЕНКА ВЛИЯНИЯ РАДИОАКТИВНОГО ЗАГРЯЗНЕНИЯ ПИЩЕВЫХ ПРОДУКТОВ ЖИВОТНОГО И РАСТИТЕЛЬНОГО ПРОИСХОЖДЕНИЯ НА КАЧЕСТВО ПРОТЕКАНИЯ ФИЗИКО-ХИМИЧЕСКИЕ ПРОЦЕССОВ // Международный студенческий научный вестник. – 2023. – № 6. ;
URL: https://eduherald.ru/ru/article/view?id=21349 (дата обращения: 19.05.2024).

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)

«Фундаментальные исследования» список ВАК ИФ РИНЦ = 1,674